Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 1): 131861, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38670207

RESUMO

This study characterized four corrole derivatives, namely Cbz-Cor, MetCbz-Cor, PTz-Cor, and PTzEt-Cor, examining their photophysical, electrochemical, photobiological, and biomolecule-binding properties. Experimental photophysical data of absorption and emission elements correlated with a theoretical analysis obtained through time-dependent density functional theory (TD-DFT). As for the photophysical properties, we observed lower fluorescence quantum yields and discernible differences between the excited and ground states, as indicated by Stokes shift values. Natural Transition Orbit (NTO) plots presented high occupied molecular orbital - low unoccupied molecular orbital (HOMO-LUMO) densities around the tetrapyrrolic macrocycle in all examples. Our findings demonstrate that corroles maintain stability in solution and offer photostability (<20 %), predominantly in DMSO(5 %)/Tris-HCl (pH 7.4) buffer solution. Furthermore, the singlet oxygen (1O2) quantum yield and log POW values underscore their potential application in photoinactivation approaches, as these corroles serve as effective ROS generators with more lipophilic features. We also evaluated their biomolecular binding capacity towards salmon sperm DNA and human serum albumin using spectroscopic techniques and molecular docking analysis for sustenance. Concerning biomolecule interaction profiles, the corrole derivatives showed a propensity for interacting in the minor grooves of the double helix DNA due to secondary forces, which were more pronounced in site III of the human serum protein.

2.
J Inorg Biochem ; 239: 112070, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36450221

RESUMO

With the increasing development of metallopharmaceuticals, coordination compounds become viable alternatives for therapeutic uses. Despite the importance of platinum derivatives in this area, first-row transition metals complexes are welcome due to their characteristics. Vanadium is a promising metal in this context, as it has a range of compounds with different biological applications, including anticancer therapeutic effects. In this effort, the study of interactions between coordination compounds with deoxyribonucleic acid and with human serum albumin is fundamental. In this way, ten iminic ligands were synthesized by condensing p-substituted aromatic benzohydrazides (OH, CH3, H, NO2, and NH2) with salicylaldehyde (L1As-L5As) or pyridoxal hydrochloride (L1P-L5P). These ligands have characteristics that allow the tridentate coordination of vanadium cations, leading to the formation of ten vanadium(V) complexes (C1As-C5As and C1P-C5P) with different structural features, all characterized by single-crystal X-ray diffraction, UV-Vis and infrared spectroscopies, and cyclic voltammetry. In addition, the complexes were tested for their interactions with calf thymus deoxyribonucleic acid and human serum albumin by spectroscopic assays and molecular docking calculations. These new results can contribute to further research and provide different ways to design new vanadium complexes with biological applications.


Assuntos
Complexos de Coordenação , Vanádio , Humanos , Vanádio/química , Simulação de Acoplamento Molecular , Ligantes , Albumina Sérica Humana/química , DNA/química , Tomografia Computadorizada por Raios X , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...